27 research outputs found

    The Differential Role of Human Cationic Trypsinogen (PRSS1) p.R122H Mutation in Hereditary and Nonhereditary Chronic Pancreatitis: A Systematic Review and Meta-Analysis.

    Get PDF
    Background:Environmental factors and genetic mutations have been increasingly recognized as risk factors for chronic pancreatitis (CP). The PRSS1 p.R122H mutation was the first discovered to affect hereditary CP, with 80% penetrance. We performed here a systematic review and meta-analysis to evaluate the associations of PRSS1 p.R122H mutation with CP of diverse etiology. Methods:The PubMed, EMBASE, and MEDLINE database were reviewed. The pooled odds ratio (OR) with 95% confidence intervals was used to evaluate the association of p.R122H mutation with CP. Initial analysis was conducted with all etiologies of CP, followed by a subgroup analysis for hereditary and nonhereditary CP, including alcoholic or idiopathic CP. Results:A total of eight case-control studies (1733 cases and 2415 controls) were identified and included. Overall, PRSS1 p.R122H mutation was significantly associated with an increased risk of CP (OR = 4.78[1.13-20.20]). Further analysis showed p.R122H mutation strongly associated with the increased risk of hereditary CP (OR = 65.52[9.09-472.48]) but not with nonhereditary CP, both alcoholic and idiopathic CP. Conclusions:Our study showing the differential role of p.R122H mutation in various etiologies of CP indicates that this complex disorder is likely influenced by multiple genetic factors as well as environmental factors

    Large Language Models for Information Retrieval: A Survey

    Full text link
    As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field

    Structure and performance analysis of fusion positioning system with a single 5G station and a single GNSS satellite

    No full text
    ABSTRACTNaGlobal vigation Satellite System (GNSS) positioning technology is widely used for its high precision, global, and all-weather service. However, in complex environments such as urban canyons, GNSS performance is often degraded due to signal occlusion and even fails to achieve positioning due to the insufficient visible satellites. Because of the characteristics of large bandwidth, low latency, and high Base Station (BS) density, the fifth-Generation mobile communication (5G) technology has gradually become a trend for positioning in cities while offering traditional communication service. To supply the communication demands of the User Equipment (UE), only one BS is usually considered to establish a connection with the UE during the BS construction. However, the positioning accuracy with a single BS in urban canyons will be significantly reduced. To further improve the positioning accuracy in such extreme scenarios, this paper proposes a simplified 5G/GNSS fusion positioning system architecture using observations from only a 5G BS and a GNSS satellite. In this system, the GNSS receiver is mounted on the 5G BS, and the measurements provided by the receiver are used to form the differential code and complete the position estimation. The positioning mathematical models of the system based on the original code and differential code are derived. Then, the impacts of the measurements noise and the time synchronization error on the positioning accuracy are analyzed theoretically. Finally, the positioning performance is investigated by a set of simulation experiments. Numerical results show that under the existing 5G measurement noise and 2 m’s code measurement noise, the improvement of the differential code based fusion positioning compared with the 5G-only positioning is more than 32%, which is also about 6% higher than the original code based fusion positioning. Besides, this improvement is not affected by the time synchronization error between the BS and the GNSS satellite

    Numerical Study on the Disturbance Effect of Short-Distance Parallel Shield Tunnelling Undercrossing Existing Tunnels

    No full text
    The construction of new tunnels poses a threat to the operational safety of closely existing tunnels, and the construction mode of parallel undercrossing over short distances has the most significant impact. In this study, a new double-line shield tunnel parallel undercrossing of existing tunnels in Hefei, China, is taken as an example. A three-dimensional (3D) numerical model using FLAC3D finite difference software was established. The dynamic construction of the new double-line shield tunnel undercrossing the existing subway tunnel over a short distance and in parallel was simulated. The pattern of existing tunnel settlement and change in lining stress caused by the shield tunnelling process were analyzed. The reliability of simulation was verified through field-monitoring data. Finally, based on the numerical model, the effects of change in stratum sensitivity on the settlement of existing tunnel, lining internal force, and surface settlement are discussed. The results show that during shield tunnelling, the maximum ground settlement is 3.9 mm, the maximum settlement at the arch waist of existing tunnel near the new tunnel is 7.75 mm, and the maximum vault settlement is 5.38 mm. The maximum stress of lining of existing tunnel before the excavation is 7.798 × 105 Pa. After the construction of double-line shield tunnel, the maximum stress of lining is 1.124 × 106 Pa, an increase of 44% than that before the construction. The surface settlement and tunnel settlement are sensitive to the weakening of soil layer strength, and lining stress is not affected by the weakening of soil layer strength. The field-monitoring results are consistent with the numerical simulation results, and the model calculation is reliable. This study plays an important role in ensuring construction safety and optimizing the construction risk control of a tunnel

    Stability Analysis of Position Datum for Real-Time GPS/BDS/INS Positioning in a Platform System with Multiple Moving Devices

    No full text
    The rapid development of unmanned aerial vehicles (UAVs) in recent years has promoted their application in various fields, such as precise agriculture, formation flight, etc. In these applications, the accurate and reliable real-time position and attitude determination between each moving device in the same platform system are the key issue for safe and effective cooperative works. In traditional ways, static reference stations should be set up near the platform to keep the stable position datum of the platform system. In this paper, we abandoned the static stations and expected to achieve stable position datums with the platform system itself. To achieve this goal, we proposed an improved method based on both the Global Positioning System (GPS)/Beidou Navigation Satellite System (BDS) data and the inertial navigation system (INS) data to obtain precise positions of the moving devices. The time-differenced carrier phase (TDCP) was used to get the position variations and update the positions over time, and then, the INS data was integrated to further improve the accuracy and reliability of the updated positions; thus, this method is denoted as the TDCP/INS method. To evaluate the performance of this method and compare it with the traditional single-point positioning (SPP) method and the Kalman filtered SPP (KFSPP) method, a field vehicle experiment was conducted, and the position results achieved from these three methods were compared with those from the tightly combined real-time kinematic positioning (RTK)/INS method, where centimeter-level accuracy was obtained and regarded as the reference. The quantitative analysis where the position variations were evaluated and the qualitative analysis where the vehicle trajectories in three typical urban driving scenarios were discussed were both made for the three methods. The numerical results showed that the accuracy of the position variations from the SPP, KSPP, and TDCP methods was at the meter level, while that from the TDCP/INS method improved to the centimeter level, and the accuracies were 1.9 cm, 2.9 cm, and 3.1 cm in the east, north, and upward directions. The trajectory results also demonstrated a perfect consistency of the driving positions between the TDCP/INS method and the reference. As a contrast, the trajectories from the SPP and KFSPP methods had frequent jumps or sways when the vehicle drove along a large, curved road, turned at a crossroad, and passed under an urban viaduct

    A Novel Method for Mitigating the GPS Multipath Effect Based on a Multi-Point Hemispherical Grid Model

    No full text
    The multipath effect is a crucial error source caused by the environment around the station and cannot be eliminated or mitigated by differential algorithms. Theoretically, the maximum value for the carrier phase is a quarter the wavelength, i.e., about 4.8 cm for the GPS L1 signal. Considering the increasing demands of high-precision applications, the multipath error has become a major factor affecting the accuracy and reliability of GPS millimeter-level data processing. This paper proposes a multi-point hemispherical grid model (MHGM) to mitigate the multipath effect. In this method, the hemisphere centered on each station is divided into a grid, and the multipath error at the station is estimated based on the parameterization of the grid points. The double-differenced (DD) observed-minus-calculated (OMC) values on some previous days are treated as the observation values to model the present multipath error. Contrary to the present methods which rely much on the platform of data collection and processing, MHGM can be potentially applied to GPS data processing with the existing hardware and software. Experiments in high-multipath and low-multipath environments are designed by mounting a baffle or not. The experimental results show that MHGM is effective in mitigating the multipath effect. When using data from the previous day, an average improvement of about 63.3% in the RMS of DD OMC can be made compared with that without correction, and this is basically consistent with the sidereal filtering (SF) method which is 63.0%. Furthermore, the effectiveness of the above two methods is better than that of the empirical site model (ESM). The kinematic positioning results are also basically consistent with the statistical results of the RMS values of DD OMC. Historical data from more than one day can more explicitly and effectively model the MHGM. Furthermore, compared with the SF method, the MHGM can be used not only to mitigate the multipath error, but also to orientate the sources of the multipath error around the station, and give guidance in the physical elimination of these sources

    Triple-Frequency Code-Phase Combination Determination: A Comparison with the Hatch-Melbourne-Wübbena Combination Using BDS Signals

    No full text
    Considering the influence of the ionosphere, troposphere, and other systematic errors on double-differenced ambiguity resolution (AR), we present an optimal triple-frequency code-phase combination determination method driven by both the model and the real data. The new method makes full use of triple-frequency code measurements (especially the low-noise of the code on the B3 signal) to minimize the total noise level and achieve the largest AR success rate (model-driven) under different ionosphere residual situations (data-driven), thus speeding up the AR by directly rounding. With the triple-frequency Beidou Navigation Satellite System (BDS) data collected at five stations from a continuously-operating reference station network in Guangdong Province of China, different testing scenarios are defined (a medium baseline, whose distance is between 20 km and 50 km; a medium-long baseline, whose distance is between 50 km and 100 km; and a long baseline, whose distance is larger than 100 km). The efficiency of the optimal code-phase combination on the AR success rate was compared with that of the geometry-free and ionosphere-free (GIF) combination and the Hatch-Melbourne-Wübbena (HMW) combination. Results show that the optimal combinations can always achieve better results than the HMW combination with B2 and B3 signals, especially when the satellite elevation angle is larger than 45°. For the wide-lane AR which aims to obtain decimeter-level kinematic positioning service, the standard deviation (STD) of ambiguity residuals for the suboptimal combination are only about 0.2 cycles, and the AR success rate by directly rounding can be up to 99%. Compared with the HMW combinations using B1 and B2 signals and using B1 and B3 signals, the suboptimal combination achieves the best results in all baselines, with an overall improvement of about 40% and 20%, respectively. Additionally, the STD difference between the optimal and the GIF code-phase combinations decreases as the baseline length increases. This indicates that the GIF combination is more suitable for long baselines. The proposed optimal code-phase combination determination method can be applied to other multi-frequency global navigation satellite systems, such as new-generation BDS, Galileo, and modernized GPS

    Investigation of Tightly Combined Single-Frequency and Single-Epoch Precise Positioning Using Multi-GNSS Data

    No full text
    The loose combination (LC) and the tight combination (TC) are two different models in the combined processing of four global navigation satellite systems (GNSSs). The former is easy to implement but may be unusable with few satellites, while the latter should cope with the inter-system bias (ISB) and is applicable for few tracked satellites. Furthermore, in both models, the inter-frequency bias (IFB) in the GLObal NAvigation Satellite System (GLONASS) system should also be removed. In this study, we aimed to investigate the performance difference of ambiguity resolution and position estimation between these two models simultaneously using the single-frequency data of all four systems (GPS + GLONASS + Galileo + BeiDou Navigation Satellite System (BDS)) in three different environments, i.e., in an open area, with surrounding high buildings, and under a block of high buildings. For this purpose, we first provide the definition of ISB and IFB from the perspective of the hardware delays, and then propose practical algorithms to estimate the IFB rate and ISB. Thereafter, a comprehensive performance comparison was made between the TC and LC models. Experiments were conducted to simulate the above three observation environments: the typical situation and situations suffering from signal obstruction with high elevation angles and limited azimuths, respectively. The results show that in a typical situation, the TC and LC models achieve a similar performance. However, when the satellite signals are severely obstructed and few satellites are tracked, the float solution and ambiguity fixing rates in the LC model are dramatically decreased, while in the TC model, there are only minor declines and the difference in the ambiguity fixing rates can be as large as 30%. The correctly fixed ambiguity rates in the TC model also had an improvement of around 10%. Once the ambiguity was fixed, both models achieved a similar positioning accuracy

    Precise capture of fish movement trajectories in complex environments via ultrasonic signal tag tracking

    No full text
    Ultrasonic tag tracking technology has been widely used in fish behavior research, but most existing studies obtain fish movement trajectories through use of supporting software or post-processing services provided by the manufacturers of the relevant equipment. Articles concerning fish positioning principles and optimization and processing methods suited to complex water environments, are rarely published. This paper proposes a set of solutions permitting precise capture of fish movement trajectories. The proposed methods can effectively mitigate the impact of difficult conditions such as partial loss of time synchronization signals and data containing gross error-bearing observations on the process of locating tagged fish. Test results show that (1) Even if time synchronization signals for a continuous 2 h period are lost, the accuracy of time synchronization between the hydrophones remains consistent with the requirements of meter-level positioning. (2) The proposed method can effectively detect the existence of gross errors exceeding 10 m in the observation data; the success rate of the method in identifying unique gross error-bearing observations was 99.7%. (3) Based on existing hydrophones with millisecond-level observation precision, three-dimensional (3D) positioning of fish-borne signal tags to m precision is possible
    corecore